Finding a Maximum Cut of a Planar Graph in Polynomial Time

نویسنده

  • F. Hadlock
چکیده

The problem of finding a maximum cut of an arbitrary graph is one of a list of 21 com-binatorial problems (Karp-Cook list). It is unknown whether or not there exist algorithms operating in polynomial bounded time for any of these problems. It has been shown that existence for one implies existence for all. In this paper we deal with a special case of the maximum cut problem. By requiring the graph to be planar, it is shown the problem can be translated into a maximum weighted matching problem for which there exists a polynomial bounded algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

We propose a fixed-parameter tractable algorithm for the Max-Cut problem on embedded 1-planar graphs parametrized by the crossing number k of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most 3 planar graphs, using edge removal and node contraction. The Max-Cut problem...

متن کامل

Approximation Algorithms for Connected Maximum Cut and Related Problems

An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V,E) and the goal is to find a subset of vertices S ⊆ V that maximizes the number of edges in the cut δ(S) such that the induced graph G[S] is connected. We present the first non-trivial Ω( 1 logn ) approximation algorithm for the Connected Maximum Cut problem in general graphs using novel techniques. We then ...

متن کامل

Minimal Disconnected Cuts in Planar Graphs

The problem of finding a disconnected cut in a graph is NP-hard in general but polynomial-time solvable on planar graphs. The problem of finding a minimal disconnected cut is also NP-hard but its computational complexity was not known for planar graphs. We show that it is polynomial-time solvable on 3-connected planar graphs but NP-hard for 2-connected planar graphs. Our technique for the first...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

A Simple MAX-CUT Algorithm for Planar Graphs

The max-cut problem asks for partitioning the nodes V of a graph G = (V,E) into two sets (one of which might be empty), such that the sum of weights of edges joining nodes in different partitions is maximum. Whereas for general instances the max-cut problem is NPhard, it is polynomially solvable for certain classes of graphs. For planar graphs, there exist several polynomial-time methods determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1975